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The solution of the &f-similar problem of the action of a moving load at the boundary of a non-hear 

elastic weakly anisotropic half-space is investigated. A solution is constructed in the form of a system of 

quay-longit~jnal and q~~-~~e~ two~ime~ioa~ stations simple and shock waves. Non- 

linear effects turn out to be significant wben constructing the quasi-transverse wave system. 

THIS PAPER is a direct continuation of [1], which investigated stationary two-dimensional simple 
and shock waves. The problem of the effect of non-linearity on the reflection of a weak 
longitudinal shock wave from a plane boundary in an elastic medium was discussed in [2, 31, 
and it was shown that the non-linearity has a significant effect on the solution if the angle 
between the wave front and the wall is close to the limiting one (in the case of an isotropic 
body, close to x12). It is shown below that, in the general case, a small non-linearity and aniso- 
tropy governs at the principal order the nature and sequence of the quasi-transverse waves. 
When the non-~earity and a~sotropy tend to zero, the domain occupied by these waves 
decreases and in the lit they merge into a single transverse wave, 

Solutions have been given [4] for particular plane self-similar boundary-value problems of 
the reflection of shock waves from the boundary of an isotropic non-linear elastic half-space. 

1. Suppose that a non-linear elastic weakly anisotropic non-heat-conducting medium occu- 
pies the half-space $3 0 (q,, i = 1,2,3 are Lagrangian coordinates and are rectangular Cartes- 
ian coordinates in the unstressed state), and that stresses are applied to the rll =0 plane taking 
constant values in each of the half-planes r\, =0, q+Wr and Q=O, qz>Wf ~=co~t). 

We will iutroduce a system of coordinates v,, v,, v, : v, = ql, v, = qa - Wt, v, = q3 in which 
the problem is self-similar: the solution depends on v, Iv,. If W is sufficiently large [l-3], the 
~~urbation from the bo~da~ v, =0 into the domain v 1> 0 propagates in the form of two- 
d~e~ion~ simple and shock waves. 

We shall assume that the stresses do, which appear in the medium during the passage of the 
wave are smail and that their order does not exceed E. One can then consider the problem of 
the action of the moving load within a linearized framework. As a first a~roximation we will 
take the solution of the linear problem for an isotropic medium. The solution of the non-linear 
problem for a weakly anisotropic medium will be found as the next approximation. 

The change in the stress tensor can be represented in the form of a sum Acr =A10+A20, 
where A# is the change of the stresses in the longitudinal wave, and A,o is the change in the 
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transverse wave. For an explicit calculation of the latter quantities we introduce two systems of 
coordinates C and 6 obtained from system vi by a rotation about the v, axis through angles 
a = ~csin~(~/~~~2~~ and a, = ar~~~((~+~~~~*~2)), so that the E,i and 51 axes are direct- 
ed along the fronts of the corresponding waves. The components of the stress tensor in the 4; 
and I$” coordinates are denoted by oi; and 0;. Then At$ is the only non-zero component in 
the longitudinal wave in the tensor A,a, and Aoil and A&, are the only non-zero components 
in the transverse wave in the tensor A,o. Returning to system v, and using the boundary 
conditions, we obtain 

Aol, = cos’a,Ao;; +sinacosaAo;, = Aal, 

AZ1 = -sin ai cosar A&; + co8 a Aa;, = AcY$, 

Arf = cosaho;, = da;, 

where Aag are the stress components specified at the boundary. 
These relations enable us to express ACT;, A$, and AC& in terms of the boundary stresses, 

i.e. to determine the intensity of the waves occurring in the solution. 
Under the variation Ao; the point dnr c,, oF, in stress space moves along a straight line, 

and under the variation Ao&, A& this point describes a plane-. The angle @ between the line 
and the normal to the plane is given by the formula co@= cos(a, -a)” 

The angle /3 = 0 only if a, = a. The difference a, -a is always finite, because the angle bet- 
ween the line and the plane cannot equal x/2. The angle between the line and the plane cannot 
vanish because B = x/2 only when a, = a + al 2, which is impossible. 

The above-men~oned fine in the problem under consideration should pass through a point 
&o~esp~nd~ng to the initial value of the stress of: (before the passage of the wave), and the 
plane through the point corresponding to the variable stresses ai (a;$ = ayI + A@$ The point 
of intersection A between the line and the plane enables one to determine the stresses o; in 
the domain between the longitudinal and transverse waves, 

When one considers non-linear waves, a curve L, corresponding to quasi-long~tud~ai 
waves, passes through the initial state. The curve I, is a segment of the integral curve of a 
simple non-reversing wave or an evolutionary segment of a shock polar [5], For simplicity one 
can consider the projection of the curve L, specified in the ninedimensional dy space, onto the 
three-dimensional CT,, space. At any point A on the curve L one can construct a two- 
dimensional surface S,, corresponding to the variation of quantities in a succession of two 
quasi-transverse waves [l], which we shall also project unto the bee-d~e~ional subspace 
oa_ To solve the non-linear problem it is necessary to choose the point A such that the surface 
passes through the point a;, in accordance with the boundary conditions. Then the 
coordinates of the point A specify the stresses between the quasi-longitudinal and the first of 
the quasi-transverse waves. Because the curve L and the surfaces S, have tangents [l, $1, it is 
obvious that if the points 0: and ai are sufficiently close, the problem becomes linear and, 
consequently, has a unique solution. 

The weak non-linearity and an~so~~y cause the transverse wave to decompose into two or 
more quasi-transverse waves, moving with nearly identical velocities. Ignoring details 
associated with the decomposition of the transverse wave to a first approximation into two or 
more quasi-transverse simple and shock waves, the solution of the weakly non-linear problem 
with small anisotropy is close to the solution in the first approximation. 

In particular, one can show that the position of the point A differs from its position in the 
first a~~ox~a~on by a qu~n~ty of order g = max{e’, ge], where g is the a~~tropy parameter. 
This is connected with the fact that in the domain under consideration, with size of order E, the 
angle between the tangent to the curve L and the corresponding line in the first approx- 
imation, and also between the tangent planes to S, and the corresponding plane in the first 
approx~~~on, have an order of magnitude no greater than {a, g]. 

The effects on the solution of non-linearity~ together with the strong influence Of small 
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anisotropy, appear in quasi-transverse wave behaviour in the same way as in one-dimensional 
non-stationary problems [6,7]. The behaviour of quantities in quasi-transverse stationary two- 
dimensional simple and shock waves is the same as the behaviour of one-dimensional non- 
stationary simple and shock waves [l] up to an accuracy of order x, and, consequently, these 
waves can be constructed in the same way as in the one-dimensional non-stationa~ case. 
However, unlike the onedimensional non-stationary case, here the quasi-transverse waves 
propagate through a medium whose state is not specified in advance, but is “prepared” by the 
q~si-lon~tud~~ wave. 

2. To describe quasi-transverse wave processes in a non-linear elastic medium with a small 
anisotropy of general form, we will introduce a two-dimensional potential F [8] (as a function 
of uzI and a,) which occurs in the equation of motion of the two-dimensional stationary 
quasi-transverse waves and jump conditions 

where fi g, rc, s, p, 4, e and d are constants for which expressions were obtained in [8]. The 
constants f, g and K have the following physical inte~retations: the small quantity g is the 
anisotropy parameter, p, q, e, d-g, f/p is the characteristic velocity when there is no non- 
linearity or anisotropy, and K is the elastic constant of the medium and characterizes the non- 
linear properties of the medium in quad-~ansve~ waves, 

When d = e = 0, e.g. for media with some symmetry (such as a transversely isotropic or 
orthotropic elastic medium), by translating the coordinate axes in the al,, aX plane one can 
remove cubic terms in the expression for F 181. The new origin of coordinates is found at the 
point O.(2q/rc; Zpltc). By subsequent rotation about the new origin of coordinates 0, through 
an angle rp the function F for the an&tropic medium is reduced to the form 

a$ = (-air + 2q / w) sin (p + (a;,-2p / K) CoSQ 

$1 = (4, -2q/K)cosQ+(& -2pIK)sinQ (2.1) 

tg2Q = - (s+4pq/K)[g+2(P2-!12)/~l 

Below we shall investigate quasi-transverse waves in axes a;,, o;I with the superscript n 
omitted. 

‘Rvo quasi-transverse simple waves participate in the solution of the non-linear problem. 
The angles between the v, axis and the direction of propagation of these two waves is 
governed by the relations [l] 

6,,* = a + yft,2, a = msin j/p / p. W2 

yfl,2 = A”[C2 - f + ~(a& + aif1 f ((b;, - a$ + 2q / IC)~ -t 4a~&H)1 

AZ = 2pOW2 sin &CC)SOI, C* = pow2 sin* 01 

(2.2) 

The properties of quasi-transverse waves were investigated in [l] using variables ii = &v, /hi, 
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where the w, are the components of the displacement 
between the variables li (i = 2, 3) and oZl, a, 

vector. The following relations hold 

The integral curves of stationary quasi-transve~e simple waves are described by the 
differential equations (11 

(2.4) 

The form of the integral curves (2.4) and the variation of the quantities yz 1 along them was 
investigated in [l]. 

The shock polar of stationary q~si-tra~ve~e shock waves in the cfzl, o, plane is given by 
the equation [l] 

(a& f a:, - R2) (&o2r - a;,a,, f + 2&w’(a;, - a21 16, - (331) = 0 

c42.5) 
4 

R2 = 0;; +031 

Here a: (i = 2, 3) is the stress in front of the quasi-transverse shock wave. The form of the 
shock polar (2.5) and its segments, which simultaneously satisfy the non-decreasing entropy 
and evolution conditions, are given in [l]. 

To construct the part of the solution of the moving load problem that corresponds to the 
quasi-~~sve~e wave system, it is necessary in the ozl, 0, plane to connect the point a$ 
corresponding to the state behind the quasi-longitudinal wave to the point ai corresponding 
to the boundary conditions (ai = a”, + do;), using the integral curves of the quasi-transverse 
simple non-reversing waves and the evolving segments of shock polars of quasi-transverse 
shock waves, observing the order of succession of the waves given by their velocities. The 
solution of the moving load problem is constructed in the same way as the solution of the 
sudden load problem at the boundary of a non-linear elastic half-space [d, 71. The latter 
references give all possible solutions in the form of systems of quasi-transverse waves, 
depending on the position of the initial point cr; and the position of the final point 0:. 

The anisotropy of the state in front of the quasi-transverse wave system, on which the 
qualitative forms of the integral curves of the simple quasi-transverse waves and shock depend, 
and the polars of the quasi-transverse shock waves, are given by the quantity g [6,7], which by 
assumption does not exceed E. If the anisotropy is due to the initial deformation, then 

P=~O%-(r,,) 

where y is the elastic constant of the medium. The difference 0, -G, depends on the initial 
deformation, on the intensity of the q~si-longitud~al wave (given by ai and a;), and on IV. 
(This will be shown below.) 

3. We construct a system of quasi-~ansver~ waves for the ease of a general situation when g 
is of order E and the stresses in the region between the quasi-longitudinal wave and the system 
of quasi-transverse waves at is also of order E. 

The behaviour of quasi-transverse simple and shock waves greatly depends on the sign of 
the elastic constant K [6,7]. We will consider the case when K > 0. The integral curves of the 
simple quasi-transverse waves are two or~ogon~ families of straight lines for the fast and slow 
waves [l]. The fast simple waves correspond to w1 in Eq. (2.2) (yl SW&, and the integral 
curves of these waves are parallel to the CT,, axis (Fig. 1). The slow waves correspond to yz 
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and their integral waves are parallel to the CT,, axis. The fast and slow simple waves do not 
reverse when the conditions yyl >O, y2 >O are satisfied [l]. The arrows in Fig. 1 show the 
direction of change of the qu~tities CT, and CT, for quasi-transverse simple non-reversing 
waves. 

The shock polar of quasi-~ansve~e shock waves consists of two straight lines 6, = a& 
o, = a$ intersecting at the initial point A (a& a;). The slow shock waves correspond to the 
evolution segment AE (Fig. 1) of the shock polar aj: &CI, % --%a$ along the line ~1, = a: 
[l, 61. Fast shock waves correspond to the evolution segment AJ (Fig. 1) of the shock polar 
a,:a:a,a-_Xa,* ontheline ozl=o$. 

J and E are Jouguet points. At J the quantity w, calculated along the shock polar [l], is 
identical with the y, computed along the integral curve of the fast simple wave using (2.2). At 
E we similarly have y = wz. 

Figure 2 shows the systems of quasi-transverse simple and shock waves which are the 
solutions for various positions of the points a$, and a&. The fo~ow~g notation is used in Fig. 
2: Z$ and Rz are, respectively, the slow and fast simple waves, S, and S, are the slow and fast 
shock waves, S,, is the slow Jouguet shock wave (A -+ E jump), and S, is the fast Jouget 
shock wave (the jump A -+ J). 

The solution is a sequence of fast and slow waves. In regions 3,10 and 6 the solution contains 
the fast compound wave S&. A fast compound wave comprises two single-type waves 
moving with close velocities, and in this case they are a fast Jouguet shock wave and a fast 
simple wave. In regions 4,5 and 6 the solution contains the slow aced wave S&Z,,. A slow 
compound wave is a sequence of a slow Jouguet shock wave and a slow simple wave. 

In slow waves with K > 0 the CT,, component varies, and for fast waves the 02, component 
varies. 

The solution of the problem for K c 0 is constructed similarly [7] and is also a sequence of 
two waves. 

A quasi-lon~t~~al wave can change the sign of the difference a,-o, without changing 
its order of magnitude. In this case the solution for the quasi-transverse wave system is also a 
sequence of two waves. However, it is now the CT,, component that varies in the fast wave and 
o, in the slow wave, i.e. the order of wave succession changes. 

The quantity g, describing the anisotropy of the medium in the quasi-transverse wave, 
changes because of the deformation in the quasi-longitudinal wave, and cases are possible 
when g is reduced so that its magnitude is no greater than E’. In this case the effects of weak 
non-linearity and weak anisotropy become comparable with one another and the part of the 
solution for the moving load problem which corresponds to the quasi-transverse wave system 
has a more complicated picture (671. 
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is satisfied. 
If Eq. (4.1) is satisfied the point A lies on the c$~ axis and coincides with the point E. In this 

case the n plane is decomposed into three regions (regions l-6 are not present), and the 
solution is symmetric about the a& axis. If Eq. (4.2) is satisfied, the point A lies on the a$ axis 
and coincides with the point J. In this case the x plane is also decomposed into three regions 
(regions 2,3,5,6,9,10 are not present), and the solution is symmetric about the a$ axis. 

The forms of the surfaces separating the different types of solution can be graphically aviated in the 
case of an isotropic body with ai = 0. The stressed state after the passage of the quasi-longitudinal wave 
in front of the transverse wave system is described by the following stress tensor components 

A& =sin2(a, -a>Ao;;, A& = 0 

A&J = Aoi2 =O, A&=0 

We shall assume that the quantity VI& -du is of the order of E or less. We will find the principal 
directions of the tensor cr& (a, j’5 = 2, 3). They are determined by the eigenvalues of the matrix 
components of the tensor d4 : kt = 1, & = 0. The principal axes therefore coincide with the lines Z, and 2 
(Fig. 3). The point A corresponding to the stressed state between the quasi-longitudinal wave that has 
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passed and the quasi-transverse system of waves lies on the line with direction vector n, passing through 

the point 0:. Consequently, for the case of an isotropic body the point A lies on the line I1 and when the 
boundary conditions 0: change it moves in the plane IC along this line. Consequently the point J, which in 
the case under consideration lies on the line II, is also displaced along this line. 

Thus the surfaces dividing the various types of solution in the isotropic body case are three intersecting 
planes. Their mutual positions, projected onto the (T,,cQ~ plane, are depicted in Fig. 4. In regions 8 the 
solution is a succession of fast and slow simple waves, in regions 9 the solution is a succession of a fast 

shock wave and a slow simple. wave, and in regions 10 is a compound fast wave and slow simple wave. 

The solution of the self-similar problem of the effect of a moving load at the boundary of a 
non-linear elastic half-space is an essential part of the solution of the two-body collision 
problem. 

I wish to thank A. G. Kulikovskii, Ye. I. Sveshnikova and A. A. Barmin for their comments 
and interest. 
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