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The solution of the self-similar problem of the action of a moving load at the boundary of a non-linear
elastic weakly anisotropic half-space is investigated. A solution is constructed in the form of a system of
quasi-longitudinal and quasi-transverse two-dimensional stationary simple and shock waves. Non-
linear effects turn out to be significant when constructing the quasi-transverse wave system.

THis PAPER i a direct continuation of [1], which investigated stationary two-dimensional simple
and shock waves. The problem of the effect of non-linearity on the reflection of a weak
longitudinal shock wave from a plane boundary in an elastic medium was discussed in [2, 3],
and it was shown that the non-linearity has a significant effect on the solution if the angle
between the wave front and the wall is close to the limiting one (in the case of an isotropic
body, close to n/2). It is shown below that, in the general case, a small non-linearity and aniso-
tropy governs at the principal order the nature and sequence of the quasi-transverse waves.
When the non-linearity and anisotropy tend to zero, the domain occupied by these waves
decreases and in the limit they merge into a single transverse wave.

Solutions have been given [4] for particular plane self-similar boundary-value problems of
the reflection of shock waves from the boundary of an isotropic non-linear elastic half-space.

1. Suppose that a non-linear elastic weakly anisotropic non-heat-conducting medium occu-
pies the half-space n, =0 (n,, i=1, 2, 3 are Lagrangian coordinates and are rectangular Cartes-
ian coordinates in the unstressed state), and that stresses are applied to the m, =0 plane taking
constant values in each of the half-planes 1, =0, 1, <Wr and 1, =0, n, >Wt (W = const).

We will introduce a system of coordinates v, v,, v;: v,=1, V,=1,-Wt, v,=1, in which
the problem is self-similar: the solution depends on v,/v,. If W is sufficiently large [1-3], the
perturbation from the boundary v, =0 into the domain v,>0 propagates in the form of two-
dimensional simple and shock waves.

We shall assume that the stresses Ao, which appear in the medium during the passage of the
wave are small and that their order does not exceed €. One can then consider the problem of
the action of the moving load within a linearized framework. As a first approximation we will
take the solution of the linear problem for an isotropic medium. The solution of the non-linear
problem for a weakly anisotropic medium will be found as the next approximation.

The change in the stress tensor can be represented in the form of a sum Ac=A,0+A,0,
where Ao is the change of the stresses in the longitudinal wave, and A,o is the change in the
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transverse wave. For an explicit calculation of the latter quantities we introduce two systems of
coordinates {; and (] obtained from system v, by a rotation about the v, axis through angles
a=arcsinV(i/(p,W?)) and o, =arcsin V(A +2u)/(p,W?)), so that the &} and &7 axes are direct-
ed along the fronts of the corresponding waves. The components of the stress tensor in the &/
and & coordinates are denoted by o} and o]. Then Aoj; is the only non-zero component in
the longitudinal wave in the tensor A0, and Ao’ and Aoj, are the only non-zero components
in the transverse wave in the tensor A,0. Returning to system v, and using the boundary
conditions, we cbtain

Aoy, = cos® oA}, +sin 0.cOS QX ATy, = Ad],

A, = —sinq, cosa; AG;; +cos® a Aa,, = Aal,
i I3 i3 F4 ras

Ay =cosQAGy, = Ac],

where Ac] are the stress components specified at the boundary.

These relations enable us to express Aoy;, Acj and Aoy in terms of the boundary stresses,
i.e. to determine the intensity of the waves occurring in the solution.

Under the variation Aoy, the point o,,, ©,, o, in stress space moves along a straight line,
and under the variation Ao}, Ac, this point describes a plane. The angle B between the line
and the normal to the plane is given by the formula cosp = cos(o, — ).

The angle =0 only if o, = a. The difference o, —a is always finite, because the angle bet-
ween the line and the plane cannot equal nt/2. The angle between the line and the plane cannot
vanish because B=n/2 only when a, = o+ n/2, which is impossible.

The above-mentioned line in the problem under consideration should pass through a point
corresponding to the initial value of the stress o}, (before the passage of the wave), and the
plane through the point corresponding to the variable stresses ¢} (o}, =0, +Ac}). The point
of intersection A between the line and the plane enables one to determine the stresses o in
the domain between the longitudinal and transverse waves.

When one considers non-linear waves, a curve L, corresponding to quasi-longitudinal
waves, passes through the initial state. The curve L is a segment of the integral curve of a
simple non-reversing wave or an evolutionary segment of a shock polar [5]. For simplicity one
can consider the projection of the curve L, specified in the nine-dimensional o, space, onto the
three-dimensional o, space. At any point A on the curve L one can construct a two-
dimensional surface §,, corresponding to the variation of quantities in a succession of two
quasi-transverse waves [1], which we shall also project onto the three-dimensional subspace
o,;. To solve the non-linear problem it is necessary to choose the point A such that the surface
passes through the point ¢, in accordance with the boundary conditions. Then the
coordinates of the point A specify the stresses between the quasi-longitudinal and the first of
the quasi-transverse waves. Because the curve L and the surfaces S, have tangents [1, 5], it is
obvious that if the points o} and o} are sufficiently close, the problem becomes linear and,
consequently, has a unique solution.

The weak non-linearity and anisotropy cause the transverse wave to decompose into two or
more quasi-transverse waves, moving with nearly identical velocities. Ignoring details
associated with the decomposition of the transverse wave to a first approximation into two or
more quasi-transverse simple and shock waves, the solution of the weakly non-linear problem
with small anisotropy is close to the solution in the first approximation.

In particular, one can show that the position of the point A differs from its position in the
first approximation by a quantity of order y=max{e’, ge}, where g is the anisotropy parameter.
This is connected with the fact that in the domain under consideration, with size of order &, the
angle between the tangent to the curve L and the corresponding line in the first approx-
imation, and also between the tangent planes to S, and the corresponding plane in the first
approximation, have an order of magnitude no greater than {g, g}.

The effects on the solution of non-linearity, together with the strong influence of small
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anisotropy, appear in quasi-transverse wave behaviour in the same way as in one-dimensional
non-stationary problems [6, 7]. The behaviour of quantities in quasi-transverse stationary two-
dimensional simple and shock waves is the same as the behaviour of one-dimensional non-
stationary simple and shock waves [1] up to an accuracy of order %, and, consequently, these
waves can be constructed in the same way as in the one-dimensional non-stationary case.
However, unlike the one-dimensional non-stationary case, here the quasi-transverse waves
propagate through a medium whose state is not specified in advance, but is “prepared” by the
quasi-longitudinal wave.

2. To describe quasi-transverse wave processes in a non-linear elastic medium with a small
anisotropy of general form, we will introduce a two-dimensional potential F [8] (as a function
of 0, and o) which occurs in the equation of motion of the two-dimensional stationary
quasi-transverse waves and jump conditions

F=Y(f-8) 0% + %on - Kx(on +05)" +

+ 5030y + % (POay +q0y;) (O + 00 )+ eo; +doy,
where f, g, %, 5, p, g, € and d are constants for which expressions were obtained in [8]. The
constants f, g and x have the following physical interpretations: the small quantity g is the
anisotropy parameter, p, ¢, e, d~g, /i is the characteristic velocity when there is no non-
linearity or anisotropy, and x is the elastic constant of the medium and characterizes the non-
linear properties of the medium in quasi-transverse waves.

When d=e=0, e.g. for media with some symmetry (such as a transversely isotropic or

orthotropic elastic medlum), by translatmg the coordinate axes in the o7, o3 plane one can
remove cubic terms in the expression for F [8). The new origin of coordinates is found at the

point O.(2g/x; 2p/x). By subsequent rotation about the new origin of coordinates O. through
an angle ¢ the function F for the anisotropic medium is reduced to the form

2 2 2 2
F=Y(f"-g" o} + %(f"+g") oy - Kx(c} +05)?

%
2, .2 2 2\? 2
Y Ak AN | GOy ST (+4m)
ft=r+4 " ;& [(g+ ” )-i-s "

0} = (<03 +2q/x)sin@ + (03 ~2p/ ¥) c0s @
031 = (03 ~2q/%) cos@ + (0 —2p/ X) sin g 1)
tg2¢=—(s+4pq/x) [g+2(p* - *)/x]

Below we shall investigate quasi-transverse waves in axes o3, o} with the superscript n
omitted.

Two quasi-transverse simple waves participate in the solution of the non-linear problem.
The angles between the v, axis and the direction of propagation of these two waves is
governed by the relations [1]

B2 =0+ Vyq, O=arcsin \/u /poW?
Vi2= Act- f+ K(Ogl + 0%1 £((03; - 5%1 +2q/%¥)% + 40%10%1 )% N 22)

A? =2p,Wisinacose, C*=p,Wsin’a

The properties of quasi-transverse waves were investigated in [1] using variables , =dw,/av,,
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where the w, are the components of the displacement vector. The following relations hold
between the variables [ (i=2, 3) and o,, o,

Oy =Uh +0(eY), 03 =, +0(ey) 23)

The integral curves of stationary quasi-transverse simple waves are described by the
differential equations [1]

doy _ o} ~oh ~22/xF (0} -0} -2¢/%)? +40}03)”
doy, 26,03,

24)

The form of the integral curves (2.4) and the variation of the quantities vy, , along them was
investigated in {1}.

The shock polar of stationary quasi-transverse shock waves in the ¢,,, o, plane is given by
the equation {1}

(ng +05, -R*) (63,0, - 0;1‘331) +2gx7 (03 -65) (03, -63)=0 25)

2 2 w2
R* =0y +0y;

Here o} (i=2, 3) is the stress in front of the quasi-transverse shock wave. The form of the
shock polar (2.5) and its segments, which simultaneously satisfy the non-decreasing entropy
and evolution conditions, are given in [1].

To construct the part of the solution of the moving load problem that corresponds to the
quasi-transverse wave system, it is necessary in the o,, ©, plane to connect the point o}
corresponding to the state behind the quasi-longitudinal wave to the point o}, corresponding
to the boundary conditions (o} =6 + Ac)), using the integral curves of the quasi-transverse
simple non-reversing waves and the evolving segments of shock polars of quasi-transverse
shock waves, observing the order of succession of the waves given by their velocities. The
solution of the moving load problem is constructed in the same way as the solution of the
sudden load problem at the boundary of a non-linear elastic half-space [6, 7]. The latter
references give all possible solutions in the form of systems of quasi-transverse waves,
depending on the position of the initial point o¥ and the position of the final point ¢}.

The anisotropy of the state in front of the quasi-transverse wave system, on which the
qualitative forms of the integral curves of the simple quasi-transverse waves and shock depend,
and the polars of the quasi-transverse shock waves, are given by the quantity g [6, 7}, which by
assumption does not exceed &. If the anisotropy is due to the initial deformation, then

H+2Y
8= (65 ~033)
2%@1190
where vy is the elastic constant of the medium. The difference 6, ~0,, depends on the initial
deformation, on the intensity of the quasi-longitudinal wave (given by o} and o}), and on W.
(This will be shown below.)

3. We construct a system of quasi-transverse waves for the case of a general situation when g
is of order € and the stresses in the region between the quasi-longitudinal wave and the system
of quasi-transverse waves o} is also of order ¢.

The behaviour of quasi-transverse simple and shock waves greatly depends on the sign of
the elastic constant x [6, 7). We will consider the case when «>0. The integral curves of the
simple quasi-transverse waves are two orthogonal families of straight lines for the fast and slow
waves [1]. The fast simple waves correspond to v, in Eq. (2.2) (y,>Wv,), and the integral
curves of these waves are parallel to the o,, axis (Fig. 1). The slow waves correspond to vy,



The problem of the action of a moving load at the boundary of a half-space 507

“‘2] t

oM

K.o——-é b
<

=

Fic. 1.

and their integral waves are parallel to the o, axis. The fast and slow simple waves do not
reverse when the conditions y, >0, y,>0 are satisfied [1]. The arrows in Fig. 1 show the
direction of change of the quantities o, and o, for quasi-transverse simple non-reversing
waves.

The shock polar of quasi-transverse shock waves consists of two straight lines o, =0},
©, =0, intersecting at the initial point A (o3, o). The slow shock waves correspond to the
evolution segment AE (Fig. 1) of the shock polar o} >0, =-¥of along the line o, =0}
[1, 6]. Fast shock waves correspond to the evolution segment AJ (Fig. 1) of the shock polar
ot =0, =~ Yo} ontheline o, =0}.

J and E are Jouguet points. At J the quantity y, calculated along the shock polar [1], is
identical with the y, computed along the integral curve of the fast simple wave using (2.2). At
E we similarly have y=y,.

Figure 2 shows the systems of quasi-transverse simple and shock waves which are the
solutions for various positions of the points o}, and o},. The following notation is used in Fig.
2: R, and R, are, respectively, the slow and fast simple waves, S, and S, are the slow and fast
shock waves, S, is the slow Jouguet shock wave (A — E jump), and §,, is the fast Jouget
shock wave (the jump A — J).

The solution is a sequence of fast and slow waves. In regions 3, 10 and 6 the solution contains
the fast compound wave S,R,. A fast compound wave comprises two single-type waves
moving with close velocities, and in this case they are a fast Jouguet shock wave and a fast
simple wave. In regions 4, 5 and 6 the solution contains the slow compound wave S, R,. A slow
compound wave is a sequence of a stow Jouguet shock wave and a slow simple wave.

In slow waves with x>0 the o, component varies, and for fast waves the ©,, component
varies.

The solution of the problem for k<0 is constructed similarly [7] and is also a sequence of
two waves.

A quasi-longitudinal wave can change the sign of the difference ©,,—0,, without changing
its order of magnitude. In this case the solution for the quasi-transverse wave system is also a
sequence of two waves. However, it is now the o, component that varies in the fast wave and
O, in the slow wave, i.e. the order of wave succession changes.

The quantity g, describing the anisotropy of the medium in the quasi-transverse wave,
changes because of the deformation in the quasi-longitudinal wave, and cases are possible
when g is reduced so that its magnitude is no greater than €2, In this case the effects of weak
non-linearity and weak anisotropy become comparable with one another and the part of the
solution for the moving load problem which corresponds to the quasi-transverse wave system
has a more complicated picture [6, 7].
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4, The investigation performed above shows that the global solution of the non-linear self-
similar moving load problem is constructed as follows, In the space o, {i=1, 2, 3) in which the
points of and o} are specified, the = plane with normal » (coso; —sino; 0) passes through the
point o} (Fig. 3). We then construct a line with direction vector n, {cos¢y; —sina,; 0) from the
point ¢} up to its intersection with the » plane. This defines the point o},

Changing from coordinates o}, o}, in the © plane to o, space coordinates, the orthogonal
basis vectors {0; 1; 0) and (0; §; 1) in the n plane become orthogonal vectors (sina; ~coso; 0)
and (0; 0; 1) in the o, space, i.e. the transition from investigating quasi-transverse wave
solutions in the o3, oy plane to the original o, space preserves angles.

One must define the 0}, o}, axes in the = plane. To this end we first define the point O,
which is the point of intersection of the o,, axis and the line ! which is the intersection of the =
plane with the o©,,, o, plane. The line i is the intersection of the = plane with the o, o,
plane The lines / and  define the coordinate axes o} and o}, with direction vectors (0; 0; 1)
and (sin &; cos o; 0). The origin of coordinates O is the point (2¢/x, 2p/x). The coordinate
axes o}, o% are obtained by rotating the o},, o}, axes through an angle ¢ (2.1) {Fig. 3). We
then fix the points E(-}o3; o), J(of; —}od), E(-¥o}; —}0,*) inthe = plane with o3,
o}, coordinates. The straight lines AJ, AE, EE" and E'J divide the = plane into nine domains in
which the solution is constructed by the method described above.

When the boundary conditions o], change the n plane changes its position in the &, space
whilst remaining orthogonal to the vector n. The coordinates of the point A (o}) therefore
change. In the x plane the point A moves along a line that is the projection onto the = plane of
the line passing through the point of with direction vector n,. Because m, lies in a plane
orthogonal to the = plane, the point A obviously moves atong the line / in the = plane.

Furthermore, when o}, changes, the position of the o, o}, axes in the x plane also changes
because the intensity of the quasi-longitudinal wave occurring in the solution changes. As was
noted previously, the passage of the guasi-longitudinal wave changes the quantity g”
characterizing the anisotropy of the medium. The angle ¢ governing the position of the axes

o}, o}, depends on g” (2.1). Thus when o} changes the position of the lines AJ, AE, EE’ and
E“J changes in the o, space and the family of these lines are surfaces on which the type of
solution changes.

The point A lies on the o}, axis if the equation

- o3 -2¢/x

which follows from formulae {2.1), is satisfied, and on the of; axis if the equation
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=gu-2p/x
tgo= A=20 (42)

is satisfied.

If Eq. (4.1) is satisfied the point A lies on the o3, axis and coincides with the point E. In this
case the = plane is decomposed into three regions (regions 1-6 are not present), and the
solution is symmetric about the o3, axis. If Eq. (4.2) is satisfied, the point A lies on the o} axis
and coincides with the point J. In this case the = plane is also decomposed into three regions
(regions 2, 3, 5, 6, 9, 10 are not present), and the solution is symmetric about the o7, axis.

The forms of the surfaces separating the different types of solution can be graphically illustrated in the
case of an isotropic body with o} =0. The stressed state after the passage of the quasi-longitudinal wave
in front of the transverse wave system is described by the following stress tensor components

Ac'zz =sin?(0t; —) Aof;, AUZ“ =0
AGy; = AG3, =0, Acy;=0
We shall assume that the quantity o), -0% is of the order of € or less. We will find the principal
directions of the tensor oj, (o, B=2, 3). They are determined by the eigenvalues of the matrix

components of the tensor 0y, : A, =1, A, =0. The principal axes therefore coincide with the lines /, and /
(Fig. 3). The point A corresponding to the stressed state between the quasi-longitudinal wave that has

\J‘ A/g;

10 /

Fic.4.
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passed and the quasi-transverse system of waves lies on the line with direction vector m, passing through
the point o. Consequently, for the case of an isotropic body the point A lies on the line /, and when the
boundary conditions o} change it moves in the plane = along this line. Consequently the point J, which in
the case under consideration lies on the line /,, is also displaced along this line.

Thus the surfaces dividing the various types of solution in the isotropic body case are three intersecting
planes. Their mutual positions, projected onto the ©,,0,, plane, are depicted in Fig. 4. In regions 8 the
solution is a succession of fast and slow simple waves, in regions 9 the solution is a succession of a fast
shock wave and a slow simple wave, and in regions 10 is a compound fast wave and slow simple wave.

The solution of the self-similar problem of the effect of a moving load at the boundary of a
non-linear elastic half-space is an essential part of the solution of the two-body collision
problem.

I wish to thank A. G. Kulikovskii, Ye. I. Sveshnikova and A. A. Barmin for their comments
and interest.
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